TEAM MEMBERS​

BL
ibdm-members-lrui-square
ibdm-members-psmo-square
ibdm-members-aba-square
ibdm-members-sri-square

Epithelial monolayer morphogenesis – E2M

Our aim is to reveal the principles underlying the organization of a monolayered epithelium to ensure functionality and homeostasis.

Epithelia act as a physical barrier against external aggressions but also ensure organ functionality. If not correctly assembled or dysfunctional, this leads to pathological situations that include a variety of diseases spanning from rare developmental syndromes or cancer.

How epithelia coordinate and harmonize the responses of each cell with not only their nearest neighbors, but entire tissue, to guarantee proper spatial arrangement, integrity and functionality is still not well understood. So far, the question of epithelial coherence has been mainly tackled in invertebrate models during development or in transformed cell lines in culture.

The intestinal epithelium is a tremendous model for this field of research, as it is one of the most fast-proliferative and regenerative in mammalian organisms. In addition, the intestinal tissue is subject to adverse situations, where the balance between cell proliferation, differentiation and death has to be strictly maintained. However, the study of the cellular and developmental mechanisms that govern the development and architecture of the intestinal tissue is still in its infancy.

The general objective of our project focuses on understanding the determination and maintenance of intestinal functional domains, and to evaluate their spatiotemporal coordination.

More specifically, our aims are:

  1. to define mechanisms controlling the integrity of the proliferative domain, and assess their impact on the crypt development;
  2. to characterize the epithelial connectivity and collective behavior of the differentiated domain in homeostatic conditions or under challenging contexts.

 

One of the strong aspects of our research is to confront in vivo and in vitro murine and human disease models, and to combine different approaches from advanced cell biology, tissue engineering, histology, molecular biology, biophysics and computational modelling. This strategy allows us to determine the adaptive processes that epithelial cells employ to polarize and organize in a given environment, and enhance their ability to modulate their fate.

Fluorescence microscopy of a mouse intestinal organoid:
membranes in green and dividing cells in magenta.

Publications

News

of the team

Team members

They drive our research

Alumni

Ils ont contribué à nos activités
Marie CIBOIS
professeur d'école, Marseille, France
Anna ADAMIOK
chercheuse, Varsovie, Pologne
Alexandre CHUYEN
postdoc, Toronto, Canada
Aude NOMMICK
postdoc, Paris, France
Olivier ROSNET
chercheur, Marseille, France
Diego REVINSKI
assistant de recherche clinique, Marseille, France
Pierluigi SCERBO
postdoc, Paris, France
Andrea PASINI
Chercheur, IBDM, Marseille, France

Funding bodies

They support our research

Gallery

Epithelial monolayer morphogenesis – E2M

1. Cryptogenèse

La recherche sur les cryptes intestinales s’est principalement concentrée sur les divisions asymétriques des cellules souches en termes de destin ou de taux de prolifération. Cependant, la morphogenèse des cryptes en elle-même reste un domaine de recherche peu étudié. Dans des études récentes, nous avons mis en œuvre des cultures d’organoïdes intestinaux, leur imagerie à haute résolution et des manipulations génétiques pour déchiffrer le processus de cryptogenèse. Nous étudions actuellement les mécanismes régulant l’organisation de la crypte et leur contribution au développement de maladies intestinales rares et de cancers.

2. Organisation épithéliale et connectivité

Comment la coordination multicellulaire est-elle assurée dans les épithéliums adultes des mammifères ? Nous évaluons la structuration de l’adhésion cellulaire et l’émergence de réseaux supracellulaires au niveau tissulaire in vitro dans des cultures organoïdes et in vivo dans des tissus de mammifères, et déterminons leur orchestration spatio-temporelle pour la connectivité épithéliale.